How do you divide (3x^3 - 12x^2 - 11x - 20)/(x+5)?
2 Answers
Explanation:
Explanation:
"one way is to use the divisor as a factor in the numerator"
"consider the numerator"
color(red)(3x^2)(x+5)color(magenta)(-15x^2)-12x^2-11x-20
=color(red)(3x^2)(x+5)color(red)(-27x)(x+5)color(magenta)(+135x)-11x-20
=color(red)(3x^2)(x+5)color(red)(-27x)(x+5)color(red)(+124)(x+5)color(magenta)(-620)-20
=color(red)(3x^2)(x+5)color(red)(-27x)(x+5)color(red)(+124)(x+5)-640
"quotient "=color(red)(3x^2-27x+124)," remainder "=-640
rArr(3x^3-12x^2-11x-20)/(x+5)
=3x^2-27x+124-640/(x+5)