How do you divide #(3x^3 - 12x^2 - 11x - 20)/(x+5)#?
2 Answers
Explanation:
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(3x^2)(x+5)color(magenta)(-15x^2)-12x^2-11x-20#
#=color(red)(3x^2)(x+5)color(red)(-27x)(x+5)color(magenta)(+135x)-11x-20#
#=color(red)(3x^2)(x+5)color(red)(-27x)(x+5)color(red)(+124)(x+5)color(magenta)(-620)-20#
#=color(red)(3x^2)(x+5)color(red)(-27x)(x+5)color(red)(+124)(x+5)-640#
#"quotient "=color(red)(3x^2-27x+124)," remainder "=-640#
#rArr(3x^3-12x^2-11x-20)/(x+5)#
#=3x^2-27x+124-640/(x+5)#