How do you divide #( -3x^3+ 6x^2-13x-5 )/(x + 1 )#?
1 Answer
Feb 21, 2018
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(-3x^2)(x+1)color(magenta)(+3x^2)+6x^2-13x-5#
#=color(red)(-3x^2)(x+1)color(red)(+9x)(x+1)color(magenta)(-9x)-13x-5#
#=color(red)(-3x^2)(x+1)color(red)(+9x)(x+1)color(red)(-22)(x+1)color(magenta)(+22)-5#
#=color(red)(-3x^2)(x+1)color(red)(+9x)(x+1)color(red)(-22)(x+1)+17#
#"quotient "=color(red)(-3x^2+9x-22)," remainder "=17#
#rArr(-3x^3+6x^2-13x-5)/(x+1)#
#=-3x^2+9x-22+17/(x+1)#