How do you divide #(-3x^3 - x^2 + 3x -18)/(2x+2)#?
1 Answer
Aug 2, 2018
Explanation:
Let ,
We try to obtain factor
possible and left the free term , adjusting with
#=-3x^3color(red)(-3x^2+2x^2)color(blue)(+2x+x)+color(brown)(1-19#
#=-3x^2(x+1)+2x(x+1)+1(x+1)color(brown)(-19#
#=(x+1)[-3x^2+2x+1]color(brown)(-19#
So,
#F(x)=((x+1)[-3x^2+2x+1]color(brown)(-19))/(2(x+1)#
Hence ,
And remainder =-19
OR