How do you divide #(-4x^3-x^2+3x-4)/(x-3) #?

I changed #(-4^3) rarr (-4x^3)#. Sorry if this is not what was intended, but it seemed more likely.

1 Answer
Jul 5, 2016

#-4x^2-13x-36-112/(x-3)#

Explanation:

#" "-4x^3-x^2+3x-4#
#color(magenta)(-4x^2)(x-3) ->ul( -4x^3+12x^2) larr" Subtract"#
#" "color(white)(..)0-13x^2+3x-4#
#color(magenta)(-13x)(x-3)->" "ul(color(white)(..)-13x^2+39x)" "larr" Subtract"#
#" "0color(white)(..)-36x-4#
#color(magenta)(-36)(x-3)->" "color(white)(..)ul(-36x+108)" "larr" Subtract"#
#" "0color(white)(..)color(magenta)(-112 larr" Remainder")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(magenta)(-4x^2-13x-36-112/(x-3))#