How do you divide #(s^2-3s)/(s^2-s-6) div (s-6)/(s+2)#? Algebra Rational Equations and Functions Division of Rational Expressions 1 Answer Mauricio M. Mar 10, 2018 #= ((s^2-3s)/(s^2-s-6))/((s-6)/(s+2)) # #= ((s^2-3s)(s+2))/((s^2-s-6)(s-6)) # #= ((s^2-3s)(s+2))/((s-3)(s+2)(s-6))# #= ((s^2-3s)cancel((s+2)))/((s-3)cancel((s+2))(s-6))# #= ((s^2-3s))/((s-3)(s-6))# #= ((s^2-3s))/((s^2-9s+18))# Answer link Related questions What is Division of Rational Expressions? How does the division of rational expressions differ from the multiplication of rational expressions? How do you divide 3 rational expressions? How do you divide rational expressions? How do you divide and simplify #\frac{9x^2-4}{2x-2} -: \frac{21x^2-2x-8}{1} #? How do you divide and reduce the expression to the lowest terms #2xy \-: \frac{2x^2}{y}#? How do you divide #\frac{x^2-25}{x+3} \-: (x-5)#? How do you divide #\frac{a^2+2ab+b^2}{ab^2-a^2b} \-: (a+b)#? How do you simplify #(w^2+6w+5)/(w+5)#? How do you simplify #(x^4-256)/(x-4)#? See all questions in Division of Rational Expressions Impact of this question 1970 views around the world You can reuse this answer Creative Commons License