How do you divide #(-x^3-x^2+3x-4)/(x-3) #?

1 Answer
Jun 12, 2018

Answer:

#-x^2-4x-9 -31/(x-3)#

Explanation:

Given: #(-x^3-x^2+3x-4)/(x-3)#

#color(white)("ddddddddddddd") -x^3-x^2+3x-4#
#color(red)(-x^2)(x-3) ->color(white)("d") ul(-x^3+3x^2 larr" Subtract")#
#color(white)("ddddddddddddddd")0-4x^2+3x-4 #
#color(red)(-4x)(x-3) -> color(white)("ddd.d")ul(-4x^2+12xlarr" Subtract" )#
#color(white)("ddddddddddddddddddd")0 color(white)("d.")-9x-4#
#color(red)(-9)(x-3)->color(white)("ddddddddddd")ul( -9x+27larr" Subtract")#
#color(red)("Remainder" ->color(white)("dddddddddddd")0color(white)("d")-31#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(red)(-x^2-4x-9 -31/(x-3))#