How do you divide #(x^4 + 3x^3 + 28x + 15) /( x + 5)#?
1 Answer
#(x^4+3x^3+28x+15)/(x+5)=x^3-2x^2+10x-22+125/(x+5)#
Explanation:
You can separate out multiples of
#(x^4+3x^3+28x+15)/(x+5)#
#=(x^4+5x^3-2x^3+28x+15)/(x+5)#
#=(x^3(x+5)-2x^3+28x+15)/(x+5)#
#=x^3+(-2x^3-10x^2+10x^2+28x+15)/(x+5)#
#=x^3-2x^2+(10x^2+28x+15)/(x+5)#
#=x^3-2x^2+(10x^2+50x-22x+15)/(x+5)#
#=x^3-2x^2+10x+(-22x+15)/(x+5)#
#=x^3-2x^2+10x+(-22x-110+125)/(x+5)#
#=x^3-2x^2+10x-22+125/(x+5)#
This is equivalent to long division of polynomials.
To check that the remainder is correct, substitute
#x^4+3x^3+28x+15#
#=5^4-3*5^3-28*5+15=625-375-140+15 = 125#
If you prefer (as I do), you can long divide the coefficients - not forgetting to include a zero for the 'missing'