How do you evaluate #1-2cos^2(pi/8)#?

1 Answer
Dec 12, 2016

#- sqrt2/2#

Explanation:

Call #cos (pi/8) = cos t#. Then #cos 2t = cos (pi/4) #
Replace cos^2 t by (1 - sin^2 t), we get:
#f(t) = 1 - 2(cos^2 t) = 1 - 2(1 - sin^2 t) = - 1 + 2sin^2 t#
Use trig identity:
#cos 2t = 1 - 2sin^2 t# --> #- cos 2t = - 1 + sin^2 t#
There for:
#f(t) = - 1 + 2sin^2 t = - cos 2t = - cos (pi/4) = - sqrt2/2#
Check by calculator.
#cos (pi/8) = cos (22.5) = 0.924# --> cos^2 (pi/8) = 0.854
#1 - 2cos^@ (pi/8) = 1 - 1.708 = - 0.707#
#-sqrt2/2 = -1.414/2 = - 0.707#. OK