How do you evaluate #cos^2(pi/12)-sin^2(pi/12)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria May 2, 2016 #cos^2(pi/12)-sin^2(pi/12)=sqrt3/2# Explanation: To evaluate #cos^2(pi/12)-sin^2(pi/12)#, recall the identity #cos2theta=cos^2theta-sin^2theta# Hence, #cos^2(pi/12)-sin^2(pi/12)=cos2xx(pi/12)=cos(pi/6)=sqrt3/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 14381 views around the world You can reuse this answer Creative Commons License