How do you evaluate #cot 195#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria Jun 29, 2016 #cot195^o=2+sqrt3# Explanation: #cot195^o=cot(180^o +15^o)# = #cot15^o# Now #cot(x/2)=cos(x/2)/sin(x/2)# = #(2cos(x/2)xxcos(x/2))/(2cos(x/2)sin(x/2))=(2cos^2(x/2))/sinx# = #(1+cosx)/sinx=cscx+cotx# Hence, #cot15^o=csc30^o +cot30^o=2+sqrt3# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 6032 views around the world You can reuse this answer Creative Commons License