First, rewrite this expression as:
#(8/27)^(-2/3) => (8/27)^(1/3 xx -2)#
We can rewrite this using this rule for exponents:
#x^(color(red)(a) xx color(blue)(b)) = (x^color(red)(a))^color(blue)(b)#
#(8/27)^(color(red)(1/3) xx color(blue)(-2)) => ((8/27)^(color(red)(1/3)))^ color(blue)(-2)#
We can now write this in radical form using this rule:
#x^(1/color(red)(n)) = root(color(red)(n))(x)#
#((8/27)^(1/color(red)(3)))^-2 = (root(color(red)(3))(8/27))^-2#
We can now use this rule for dividing radicals to evaluate the radical:
#root(n)(color(red)(a)/color(blue)(b)) = root(n)(color(red)(a))/root(n)(color(blue)(b))#
#(root(3)(color(red)(8)/color(blue)(27)))^-2 => (root(3)(color(red)(8))/root(3)(color(blue)(27)))^-2 => (root(3)(color(red)(2 * 2 * 2))/root(3)(color(blue)(3 * 3 * 3)))^-2 => (2/3)^-2#
Yet again, we can rewrite this as:
#(2/3)^-2 => (2 xx 1/3)^-2 => 2^-2 xx 1/3^-2#
Now, using these rules of exponents, yes, we can rewrite this again and then evaluate:
#x^color(red)(a) = 1/x^color(red)(-a)# and #1/x^color(blue)(a) = x^color(blue)(-a)#
#2^color(red)(-2) xx 1/3^color(blue)(-2) => 1/2^color(red)(- -2) xx 3^color(blue)(- -2) => 1/2^color(red)(2) xx 3^color(blue)(2) => 1/4 xx 9 =>#
#9/4#