How do you evaluate #sec((9pi)/4)#?

1 Answer
Sep 24, 2016

#sec((9pi)/4)=sqrt2#

Explanation:

All trigonometric ratios have a cycle of #2pi#, i.e.

their values repeat after every #2pi# and we can say for example

#sinx=sin(2pi+x)=sin(4pi+x)=sin(6pi+x)=....# and

#secx=sec(2pi+x)=sec(4pi+x)=sec(6pi+x)=....#

Now #sec((9pi)/4)=sec((8pi)/4+pi/4)=sec(2pi+pi/4)=sec(pi/4)#

But #sec(pi/4)=sqrt2#, hence

#sec((9pi)/4)=sqrt2#