How do you evaluate the integral #int (1-sqrtx)/(1+sqrtx)#?
1 Answer
#-x + 4(1+ sqrt(x)) - 4ln|1 + sqrt(x)| + C#
Explanation:
Use partial fractions to get rid of the radical in the numerator.
This means that
Solving, we get that
#int -1 + 2/(1 + sqrt(x))dx#
#int -1dx + int 2/(1 + sqrt(x))dx#
#int -1dx + 2int 1/(1 + sqrt(x))dx#
Let
#int -1dx + 2int 1/u * 2(u - 1)du#
#int -1dx + 4int (u - 1)/u du#
#int -1dx + 4int u/udu - 4int 1/udu#
#int -1dx + 4int 1du- 4int 1/u du#
#-x + 4u - 4ln|u| + C#
#-x + 4(1+ sqrt(x)) - 4ln|1 + sqrt(x)| + C#
Hopefully this helps!