How do you evaluate the integral #int sec^2x/(1+tanx)dx#?

1 Answer
Jan 2, 2017

#intsec^2x/(1 + tanx)dx = ln|1 + tanx| + C#

Explanation:

This is a u-subsitution problem. Our goal is to cancel out the numerator. Let #u = 1 + tanx#. Then #du = sec^2xdx# and #dx= (du)/sec^2x#

#=intsec^2x/u * (du)/sec^2x#

#= int(1/u) du#

This can be integrated as #int(1/x)dx = ln|x| + C#.

#= ln|u| + C#

#= ln|1 + tanx| + C#, where #C# is a constant

Hopefully this helps!