How do you evaluate the integral #int (xdx)/(x^2+4x+5)#?
1 Answer
Explanation:
Let
# I = int \ x/(x^2+4x+5) \ dx #
We can complete the square on the denominator, to get
# I = int \ x/((x+2)^2-2^2+5) \ dx #
# \ \ = int \ x/((x+2)^2+1) \ dx #
Let
# I = int \ (u-2)/(u^2+1) \ du #
# \ \ = int \ u/(u^2+1) \ - 2/(u^2+1) \ du #
# \ \ = int \ u/(u^2+1) \ du \ - 2int 1 /(u^2+1) \ du #
# \ \ = 1/2int \ (2u)/(u^2+1) \ du \ - 2int 1 /(u^2+1) \ du #
The first intergral is of the form
# int \ (2u)/(u^2+1) \ du = ln | u^2+1 | #
# " "= ln | (x+2)^2+1 | #
# " "= ln | x^2+4x+5 |#
For the second integral, we can use the substitution
# u = tan theta => (du)/(d theta) = sec^2 theta # , and,#theta = tan^-1u#
# u = tan theta iff u^2=tan^2 theta #
# " " => 1+u^2=1+tan^2 theta #
# " " => 1+u^2=sec^2 theta #
Substituting into the integral we get:
# int 1 /(u^2+1) \ du = int \ d theta#
# " "= theta#
# " "= tan^-1u#
# " "= tan^-1 (x+2)#
Combining the result from both result we get:
# I = 1/2ln | x^2+4x+5 | - 2tan^-1 (x+2) + C #