How do you evaluate the limit #tan(3x)/(3tan2x)# as x approaches #0#?

2 Answers

#Lt_(x->0)(tan(3x))/(3tan2x)=1/2#

Explanation:

Let us first find #Lt_(x->0)tanx/x#

#Lt_(x->0)tanx/x=Lt_(x->0)(sinx)/(xcosx)#

= #Lt_(x->0)(sinx)/x xx Lt_(x->0)1/cosx#

= #1xx1=1#

Hence #Lt_(x->0)(tan(3x))/(3tan2x)#

= #Lt_(x->0)((tan(3x))/(3x))/(3(tan2x)/(2x))xx(3x)/(2x)#

= #(Lt_(3x->0)((tan3x)/(3x)))/(3Lt_(2x->0)((tan2x)/(2x)))xx3/2#

= #1/(3xx1)xx3/2=1/2#

Mar 6, 2017

#lim_(xrarr0)tan(3x)/(3tan(2x))=1/2#

Explanation:

Use #tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))# to rewrite #tan(3x)# as #tan(2x+x)#:

#lim_(xrarr0)tan(3x)/(3tan(2x))=lim_(xrarr0)((tan(2x)+tan(x))/(1-tan(2x)tan(x)))/(3tan(2x))#

#=lim_(xrarr0)(tan(2x)+tan(x))/(3tan(2x)(1-tan(x)tan(2x)))#

Now using #tan(2x)=(2tan(x))/(1-tan^2(x))#:

#=lim_(xrarr0)((2tan(x))/(1-tan^2(x))+tan(x))/(3(2tan(x))/(1-tan^2(x))(1-tan(x)(2tan(x))/(1-tan^2(x))))#

Multiplying through by #1-tan^2(x)#:

#=lim_(xrarr0)(2tan(x)+tan(x)(1-tan^2(x)))/(6tan(x)(1-(2tan^2(x))/(1-tan^2(x)))#

Factoring #tan(x)# then cancelling:

#=lim_(xrarr0)(tan(x)(2+1-tan^2(x)))/(6tan(x)(1-(2tan^2(x))/(1-tan^2(x)))#

#=lim_(xrarr0)(2+1-tan^2(x))/(6(1-(2tan^2(x))/(1-tan^2(x)))#

Now we can plug in #x=0# and evaluate the limit without a problem:

#=(2+1-0)/(6(1-(2(0))/(1-0)))=3/6=1/2#