How do you expand #(x + 2)^5# using Pascal’s Triangle?
1 Answer
Dec 31, 2015
Explanation:
The
#1,5,10,10,5,1#
These values are the coefficients in a binomial expansion to the
#(a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5#
Notice the pattern of the exponents: the exponent of
Apply the rule to
#(x+2)^5=x^5+5x^4(2)+10x^3(2^2)+10x^2(2^3)+5x(2^4)+2^5#
#=>x^5+10x^4+40x^3+80x^2+80x+32#