How do you express #cos( (4 pi)/3 ) * cos (( pi) /4 ) # without using products of trigonometric functions?

1 Answer

I suggest , use "Sum of Trigonometric Functions"
#cos ((4pi)/3)* cos(pi/4)=1/2*cos ((19pi)/12)+1/2*cos ((13pi)/12)#

Explanation:

Use Double-Angle Formulas

#cos (A+B)=cos A cos B-sin A sin B#

#cos (A-B)=cos A cos B+sin A sin B#

Add the left side terms equals the sum of the right terms:

#cos (A+B)+cos (A-B)=#
#cos A cos B-cancel(sin A sin B)+cos A cos B+cancel(sin A sin B)#

#cos (A+B)+cos (A-B)=2*cos A cos B#

it follows

#cos A cos B=1/2*cos (A+B)+1/2*cos (A-B)#

Use the given: Let #A=(4pi)/3# and #B=pi/4#

it follows

#cos ((4pi)/3) cos (pi/4)=#

#1/2*cos ((4pi)/3+pi/4)+1/2*cos ((4pi)/3-pi/4)#

Finally, after simplification

#cos ((4pi)/3)* cos(pi/4)=1/2*cos ((19pi)/12)+1/2*cos ((13pi)/12)#

Have a nice day !!! from the Philippines..