How do you express #cos( (5 pi)/6 ) * cos (( 17 pi) /12 ) # without using products of trigonometric functions?

1 Answer

Use SUM
#1/2 *cos (pi/4)+1/2*cos ((7pi)/12)#

Explanation:

The given: #cos ((5pi)/6)*cos ((17pi)/12)#

Derivation: Use #color(red)"Sum and Difference Formulas"#
#color(blue)"cos (x+y)=cos x cos y-sin x sin y" " "#first equation
#color(blue)"cos (x-y)=cos x cos y+sin x sin y" " " "#second equation

Add first and second equations

#cos (x+y)=cos x cos y-cancel(sin x sin y)#
#cos (x-y)=cos x cos y+cancel(sin x sin y)#

th result is

#cos (x+y)+cos (x-y)=2* cos x*cos y#

divide both sides by 2 , the result is

#1/2*cos (x+y)+1/2*cos (x-y)= cos x*cos y#

Now, Let #x=(5pi)/6# and #y=(17pi)/12# then use

# cos x*cos y=1/2*cos (x+y)+1/2*cos (x-y)#

# cos ((5pi)/6)*cos ((17pi)/12)=#
#1/2*cos ((5pi)/6+(17pi)/12)+1/2*cos ((5pi)/6-(17pi)/12)#

#=1/2*cos ((27pi)/12)+1/2*cos ((-7pi)/12)#

Take note: #cos ((-7pi)/12)=cos ((+7pi)/12)#

Also #cos((27pi)/12)=cos((24pi)/12+(3pi)/12)=cos(2pi+pi/4)=cos(pi/4)#

further simplification

#1/2*cos (pi/4)+1/2*cos ((7pi)/12)#

God bless America ....