How do you express #cos( (5 pi)/6 ) * cos (( pi) /6 ) # without using products of trigonometric functions?

1 Answer

Using Sum:
#cos((5pi)/6)*cos(pi/6)=1/2[cos((5pi)/6+pi/6)+cos((5pi)/6-pi/6)]#
#cos((5pi)/6)*cos(pi/6)=1/2[cos pi+cos ((2pi)/3)]=1/2(-1-1/2)=-3/4#

Explanation:

#cos(x+y)=cos x cos y - sin x sin y" " " " " "# 1st equation
#cos(x-y)=cos x cos y+sin x sin y" " " " " "# 2nd equation

Add first and second equations

#cos(x+y)+cos(x-y)=2*cos x cos y+0#
#cos(x+y)+cos(x-y)=2*cos x cos y#

and then

#cos x cos y=1/2[cos(x+y)+cos(x-y)]#

Let #x=(5pi)/6# and #y=pi/6#

#cos((5pi)/6)*cos(pi/6)=1/2[cos((5pi)/6+pi/6)+cos((5pi)/6-pi/6)]#
#cos((5pi)/6)*cos(pi/6)=1/2[cos pi+cos ((2pi)/3)]=1/2(-1-1/2)=-3/4#

God bless America ....