How do you express #sin(pi/ 4 ) * sin( ( 11 pi) / 12 ) # without using products of trigonometric functions?

1 Answer
Apr 9, 2016

#(-sqrt2/2)sin (pi/12)#

Explanation:

#P = sin (pi/4).sin (pi/12)#
Trig table --> #sin (pi/4) = sqrt2/2#
Trig table, trig unit circle, and property of supplement arcs -->
#sin ((11pi)/12) = sin (-pi/12 + (12pi)/12) = sin (-pi/12 + pi) = #
#= - sin (pi/12).#
The product can be expressed as:
#P = - (sqrt2/2)sin (pi/12)#
If required, you can find P's value by evaluating #sin (pi/12)#, using the trig identity: #cos (pi/6) = 1 - 2sin^2 (pi/12) = sqrt3/2#