How do you express #sin(pi/ 6 ) * cos( ( 13 pi) / 8 ) # without using products of trigonometric functions?

2 Answers
Mar 19, 2016

#=>1/2*sqrt(1/2(1-1/sqrt2)#

Explanation:

#sin(pi/6)*cos(3pi/8)#
#=>sin(pi/6)*sqrt(1/2(1+cos(cancel2*3pi/cancel8^4))#
since #costheta =sqrt(1/2(1+cos2theta))#
#=>1/2*sqrt(1/2(1+cos(3pi/4))#
#=>1/2*sqrt(1/2(1+cos(pi-pi/4))#
#=>1/2*sqrt(1/2(1-cos(pi/4))#
#=>1/2*sqrt(1/2(1-1/sqrt2)#

Mar 19, 2016

#sin (pi/8)/2#

Explanation:

P = sin (pi/6).cos ((13pi)/8)
sin (pi/6) = 1/2
On the trig unit circle,
#cos ((13pi)/8) = cos (-(3pi)/8 + 2pi) = cos ((-3pi)/8) =#
#= cos ((3pi)/8) = cos (-pi/8 + pi/2) = sin (pi/8).#
Therefor, the product can be expressed as:
#P = sin (pi/8)/2#
Next, we can find the product P by evaluating #sin (pi/8)#