How do you express #sin(pi/ 6 ) * cos( (3 pi) / 8 ) # without using products of trigonometric functions?

1 Answer
Mar 17, 2016

#sqrt(2 - sqrt2)/4#

Explanation:

#P = sin (pi/6).cos ((3pi)/8).#
Trig table --> #sin pi/6 = 1/2#
Find #cos ((3pi)/8)# by the identity: #cos 2a = 2cos^2 a - 1#
#cos ((6pi)/8) = 2cos^2 ((3pi)/8) - 1.#
#cos ((3pi)/4) = -sqrt2/2 = 2cos^2 ((3pi)/8) - 1#
#2cos^2 ((3pi)/8) = 1 - sqrt2/2 = (2 - sqrt2)/2#
#cos^2 ((3pi)/8) = (2 - sqrt2)/4#
#cos ((3pi)/8) = sqrt(2 - sqrt2)/2# (since #cos ((3pi)/8)# is positive.
Finally,

#P = (1/2)(sqrt(2 - sqrt2)/2) = (sqrt(2 - sqrt2)/4)#