How do you express #sin(pi/ 8 ) * cos(( ( 2 pi) / 3 ) # without using products of trigonometric functions?

1 Answer
Oct 31, 2016

#sqrt(2 - sqrt2)/2#

Explanation:

#P = sin (pi/8).cos ((2pi)/3)#
Trig table --> #cos ((2pi)/3) = -1/2#, then P can be expressed as:
#P = - (1/2)sin (pi/8)#
We can evaluate the value of sin (pi)/8 by the trig identity:
#2sin^2 (pi/8) = 1 - cos ((2pi)/8) = 1 - cos (pi/4) = 1 - sqrt2/2#
#sin^2 (pi/8) = (2 - sqrt2)/4#
#sin (pi/8) = sqrt(2 - sqrt2)/2#
Only the positive value is accepted because #sin (pi/8)# is positive
Finally,
#P = - (1/2)sin (pi/8) = - (sqrt(2 - sqrt2))/4#