# How do you factor #1000x^3 + 216 #?

##### 1 Answer

Dec 31, 2015

Use the sum of cubes identity to get:

#1000x^3+216#

#=(10x+6)(100x^2-60x+36)#

#=8(5x+3)(25x^2-15x+9)#

#### Explanation:

Both

#a^3+b^3 = (a+b)(a^2-ab+b^2)#

with

#1000x^3+216#

#=(10x)^3+6^3#

#=(10x+6)((10x)^2-(10x)(6)+6^2#

#=(10x+6)(100x^2-60x+36)#

Alternatively, separate out the common scalar factor

#=8(5x+3)(25x^2-15x+9)#