How do you factor #18c^2-3c-10#?
1 Answer
Explanation:
We can use an AC method:
Look for a pair of factors of
The pair
Then use this pair to split the middle term and factor by grouping:
#18c^2-3c-10#
#=18c^2+12c-15c-10#
#=(18c^2+12c)-(15c+10)#
#=6c(3c+2)-5(3c+2)#
#=(6c-5)(3c+2)#
Alternative method
Alternatively, we can find this factorisation by completing the square then using the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
To make the arithmetic easier, first multiply by
#8(18c^2-3c-10)#
#=144c^2-24c-80#
#=(12c^2)-2(12c)-80#
#=(12c-1)^2-1-80#
#=(12c-1)^2-81#
#=(12c-1)^2-9^2#
#=((12c-1)-9)((12c-1)+9)#
#=(12c-10)(12c+8)#
#=(2(6c-5))(4(3c+2))#
#=8(6c-5)(3c+2)#
So dividing both ends by
#18c^2-3c-10 = (6c-5)(3c+2)#
Why did I multiply by
If I multiplied by