How do you factor #216u^3 - v^3#?
1 Answer
May 24, 2016
Explanation:
This is a
#color(blue)"difference of cubes"# and in general is factorised as follows.
#color(red)(|bar(ul(color(white)(a/a)color(black)(a^3-b^3=(a-b)(a^2+ab+b^2))color(white)(a/a)|)))# here
#216u^3=(6u)^3rArra=6u# and
#v^3=(v)^3rArrb=v#
#rArr216u^3-v^3=(6u-v)(36u^2+6uv+v^2)#