How do you factor #40-(2y-w)^2#?
1 Answer
Aug 4, 2017
Explanation:
#"factorise using the method of "color(blue)"difference of squares"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"note that " (2sqrt10)^2=40#
#rArr40-(2y-w)^2#
#=(2sqrt10)^2-(2y-w)^2#
#"with "a=2sqrt10" and "b=2y-w#
#(2sqrt10-(2y-w))(2sqrt10+(2y-w)#
#=(2sqrt10-2y+w)(2sqrt10+2y-w)#