How do you factor #64x^3 + 343#?
1 Answer
Oct 31, 2017
Explanation:
Note that
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
So putting
#64x^3+343 = (4x)^3+7^3#
#color(white)(64x^3+343) = (4x+7)((4x)^2-(4x)(7)+7^2)#
#color(white)(64x^3+343) = (4x+7)(16x^2-28x+49)#
The remaining quadratic factor has no linear factors with real coefficients. It can be factored using the primitive complex cube root of
#omega = -1/2+sqrt(3)/2i#
Then:
#16x^2-28x+49 = (4x+7omega)(4x+7omega^2)#