How do you factor #6x^5-51x^3-27x#?
1 Answer
#6x^5-51x^3-27x#
#= 3x(2x^2+1)(x-3)(x+3)#
#= 3x(sqrt(2)x-i)(sqrt(2)x+i)(x-3)(x+3)#
Explanation:
We will use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
First separate out the common factor
#6x^5-51x^3-27x#
#= 3x(2x^4-17x^2-9)#
The remaining quartic factor is a quadratic in
#= 3x(2x^4-18x^2+x^2-9)#
#= 3x((2x^4-18x^2)+(x^2-9))#
#= 3x(2x^2(x^2-9)+1(x^2-9))#
#= 3x(2x^2+1)(x^2-9)#
#= 3x(2x^2+1)(x^2-3^2)#
#= 3x(2x^2+1)(x-3)(x+3)#
This is as far as we can go with Real coefficients, but if we allow Complex coefficients then this can be factored further as:
#= 3x(sqrt(2)x-i)(sqrt(2)x+i)(x-3)(x+3)#