How do you factor #6x^6-3x^4-9x^2#?

1 Answer
Jul 26, 2016

Answer:

#3x^2(2x^2-3)(x^2+1)#.

Explanation:

The Expression#=6x^6-3x^4-9x^2#

#=3x^2(2x^4-x^2-3)#

Now, to factorise #=2x^4-x^2-3#, let us put #x^2=t# so that the

poly. will become,

#2t^2-t-3#

#=2t^2-3t+2t-3#

#=t(2t-3)+1(2t-3)#

#=(2t-3)(t+1)#

#=(2x^2-3)(x^2+1)#..................[ as, #t=x^2#]

Therefore, the Exp.#=3x^2(2x^2-3)(x^2+1)#.