How do you factor # 9 + 6a + a² - b² - 2bc - c²#?
2 Answers
Explanation:
Notice that both of the following are perfect squares:
#9+6a+a^2 = (a+3)^2#
#b^2+2bc+c^2 = (b+c)^2#
The difference of squares identity can be written:
#A^2-B^2=(A-B)(A+B)#
So with
#9+6a+a^2-b^2-2bc-c^2 = (9+6a+a^2)-(b^2+2bc+c^2)#
#color(white)(9+6a+a^2-b^2-2bc-c^2) = (a+3)^2-(b+c)^2#
#color(white)(9+6a+a^2-b^2-2bc-c^2) = ((a+3)-(b+c))((a+3)+(b+c))#
#color(white)(9+6a+a^2-b^2-2bc-c^2) = (a-b-c+3)(a+b+c+3)#
Explanation:
or
Using identity
and now using