How do you factor # 9 + 6a + a² - b² - 2bc - c²#?

2 Answers
Dec 21, 2016

#9+6a+a^2-b^2-2bc-c^2 = (a-b-c+3)(a+b+c+3)#

Explanation:

Notice that both of the following are perfect squares:

#9+6a+a^2 = (a+3)^2#

#b^2+2bc+c^2 = (b+c)^2#

The difference of squares identity can be written:

#A^2-B^2=(A-B)(A+B)#

So with #A=(a+3)# and #B=(b+c)# we find:

#9+6a+a^2-b^2-2bc-c^2 = (9+6a+a^2)-(b^2+2bc+c^2)#

#color(white)(9+6a+a^2-b^2-2bc-c^2) = (a+3)^2-(b+c)^2#

#color(white)(9+6a+a^2-b^2-2bc-c^2) = ((a+3)-(b+c))((a+3)+(b+c))#

#color(white)(9+6a+a^2-b^2-2bc-c^2) = (a-b-c+3)(a+b+c+3)#

Dec 21, 2016

#9+6a+a^2-b^2-2bc-c^2=(a+3+b+c)(a+3-b-c)#

Explanation:

#9+6a+a^2-b^2-2bc-c^2# can be written as

#a^2+6a+9-(b^2+2bc+c^2)#

or #[a^2+2xx3xxa+3^2]-{b^2+2xxbxxc+c^2]#

Using identity #x^2+2xy+y^2=(x+y)^2#, this becomes

#(a+3)^2-(b+c)^2#

and now using #x^2-y^2=(x+y)(x-y)#, this becomes

#(a+3+b+c)(a+3-b-c)#