How do you factor #a^6+125#?
1 Answer
Nov 20, 2015
#a^6+125 = (a^2+5)(a^4-5a^2+25)#
#=(a^2+5)(a^2+sqrt(15)a+5)(a^2-sqrt(15)a+5)#
Explanation:
First use the sum of cubes identity:
#A^3+B^3=(A+B)(A^2-AB+B^2)#
with
#a^6+125 = (a^2)^3+5^3 = (a^2 + 5)((a^2)^2 - (a^2)(5) + 5^2)#
#= (a^2+5)(a^4-5a^2+25)#
Neither
Consider:
#(a^2+ka+5)(a^2-ka+5) = a^4+(10-k^2)a^2+25#
If we let
#(a^2+ka+5)(a^2-ka+5) = a^4+(10-15)a^2+25 = a^4-5a^2+25#
So:
#a^4-5a^2+25 = (a^2+sqrt(15)a+5)(a^2-sqrt(15)a+5)#