How do you factor #a^9 + b^12 c^15#?
1 Answer
Dec 5, 2015
Explanation:
The sum of cubes identity tells us that:
#A^3+B^3 = (A+B)(A^2-AB+B^2)#
Hence:
#a^9+b^12c^15=(a^3)^3+(b^4c^5)^3#
#= (a^3+b^4c^5)((a^3)^2-(a^3)(b^4c^5)+(b^4c^5)^2)#
#= (a^3+b^4c^5)(a^6-a^3b^4c^5+b^8c^10)#
If we allow Complex coefficients then this can be factored further as:
#= (a^3+b^4c^5)(a^3+omega b^4c^5)(a^3+omega^2 b^4c^5)#
where