How do you factor completely #16x^3-32x^2-25x+50#?
1 Answer
Apr 26, 2016
Explanation:
Factor by grouping, then using the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
with
#16x^3-32x^2-25x+50#
#=(16x^3-32x^2)-(25x-50)#
#=16x^2(x-2)-25(x-2)#
#=(16x^2-25)(x-2)#
#=((4x)^2-5^2)(x-2)#
#=(4x-5)(4x+5)(x-2)#