How do you factor completely #7(x-y)-z(x-y)#?

1 Answer
Jun 5, 2016

Answer:

#-(x-y)(z-7)#

Explanation:

Given,

#7(x-y)-z(x-y)#

Factor out #color(red)((x-y))#.

#=color(red)((x-y))(7*1-z*1)#

#=color(red)((x-y))color(blue)((7-z))#

Factor out #color(darkorange)(-1)# from #color(blue)((7-z))#.

#(x-y)[color(darkorange)-(-7+z)]#

#=color(green)(|bar(ul(color(white)(a/a)color(black)(-(x-y)(z-7))color(white)(a/a)|)))#