How do you factor completely #n^4 + 2n^2w^2+ w^4#?
1 Answer
Jan 2, 2016
#n^4+2n^2w^2+w^4#
#=(n^2+w^2)^2#
#=(n-iw)^2(n+iw)^2#
Explanation:
#n^4+2n^2w^2+w^4#
#=(n^2)^2+2(n^2)(w^2)+(w^2)^2#
#=(n^2+w^2)^2#
In addition, if we allow Complex coefficients then
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
So we find:
#n^2+w^2 = n^2 - (iw)^2 = (n-iw)(n+iw)#
Hence we can write:
#n^4+2n^2w^2+w^4 = (n-iw)^2(n+iw)^2#