How do you factor completely #-n^4 - 3n^2 - 2n^3#?
1 Answer
Sep 5, 2017
Explanation:
#-n^2" is a "color(blue)"common factor"" in all 3 terms"#
#rArr-n^2(n^2+3+2n)#
#=-n^2(n^2+2n+3)#
#"check the "color(blue)"discriminant"" of "n^2+2n+3#
#"with "a=1,b=2,c=3#
#Delta=b^2-4ac=4-12=-8#
#"since "Delta<0" then the roots are not real"#
#"we can factorise by finding the roots of "n^2+2n+3#
#"using the "color(blue)"quadratic formula"#
#n=(-2+-sqrt(4-12))/2=(-2+-sqrt(-8))/2#
#color(white)(n)=-1+-isqrt2larrcolor(red)" complex roots"#
#rArr-n^4-3n^2-2n^3#
#=-n^2(n+1-isqrt2)(n+1+isqrt2)#