How do you factor completely #p(x)=(x^3)-(6x^2)-4x-10#?
1 Answer
where
Explanation:
Attempt to solve
Let
Then:
#t^3 - 16t -34 = (x-2)^3 -16(x-2)-34#
#= x^3-6x^2+12x-8-16x+32-34#
#= x^3-6x^2-4x-10 = p(x) = 0#
Let
#0 = (u+v)^3-16(u+v)-34#
#= u^3+v^3+(3uv-16)(u+v)-34#
Add the constraint
Then:
#0 = u^3+(16/(3u))^3-34 = u^3+4096/(27u^3)-34#
Multiply both ends by
#0 = 27(u^3)^2 - 918(u^3) + 4096#
Use the quadratic formula to get:
#u^3 = (918+-sqrt(918^2-(4*27*4096)))/(2*27)#
#= (918+-sqrt(400396))/54#
#= (918+-6sqrt(11121))/54#
#= (3(153+-sqrt(11121)))/27#
The derivation is symmetric in
#t = root(3)((3(153+sqrt(11121)))/27) + root(3)((3(153-sqrt(11121)))/27)#
#= 1/3(root(3)(3(153+sqrt(11121))) + root(3)(3(153-sqrt(11121))))#
So the Real root of
#x_1 = 2+t#
#= 2+1/3(root(3)(3(153+sqrt(11121))) + root(3)(3(153-sqrt(11121))))#
The Complex roots are:
#x_2 = 2+1/3(omega root(3)(3(153+sqrt(11121))) + omega^2 root(3)(3(153-sqrt(11121))))#
#x_3 = 2+1/3(omega^2 root(3)(3(153+sqrt(11121))) + omega root(3)(3(153-sqrt(11121))))#
where