How do you factor completely #x^2+2ax = b^2-a^2#?
1 Answer
Mar 21, 2018
In factored form this is:
#(x+a-b)(x+a+b) = 0#
Explanation:
The difference of squares identity can be written:
#A^2-B^2 = (A-B)(A+B)#
We will use this with
Given:
#x^2+2ax = b^2-a^2#
Add
#0 = x^2+2ax+a^2-b^2#
#color(white)(0) = (x+a)^2-b^2#
#color(white)(0) = ((x+a)-b)((x+a)+b)#
#color(white)(0) = (x+a-b)(x+a+b)#