How do you factor completely #x^2 - 3x - 24#?
1 Answer
Nov 19, 2015
Use the quadratic formula to find:
#x^2-3x-24 = (x-(3+sqrt(105))/2)(x-(3-sqrt(105))/2)#
Explanation:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(3+-sqrt((-3)^2-(4xx1xx(-24))))/(2xx1)#
#=(3+-sqrt(9+96))/2#
#=(3+-sqrt(105))/2#
Hence:
#x^2-3x-24 = (x-(3+sqrt(105))/2)(x-(3-sqrt(105))/2)#