How do you factor the expression #6x^4+24x^2-72x#?
1 Answer
#6x^4+24x^2-72x#
#=6x(x^3+4x-12)#
#=6x(x-x_1)(x-x_2)(x-x_3)#
where
Explanation:
Firstly, all of the terms are divisible by
#6x^4+24x^2-72x=6x(x^3+4x-12)#
We can factor the remaining cubic factor using Cardano's method:
Let
#u^3+v^3+(3uv+4)(u+v)-12 = 0#
Add the constraint
#u^3-(4/(3u))^3-12 = 0#
Multiply through by
#27(u^3)^2-324(u^3)-64 = 0#
Use the quadratic formula to find:
#u^3=(324+-sqrt(324^2+4*27*64))/54#
#=(324+-sqrt(111888))/54#
#=(324+-12sqrt(777))/54#
#=(162+-6sqrt(777))/27#
Since the square root is Real, this gives us a Real value for
#x_1 = 1/3(root(3)(162+6sqrt(777)) + root(3)(162-6sqrt(777)))#
and Complex roots:
#x_2 = 1/3(omega root(3)(162+6sqrt(777)) + omega^2 root(3)(162-6sqrt(777)))#
#x_3 = 1/3(omega^2 root(3)(162+6sqrt(777)) + omega root(3)(162-6sqrt(777)))#
where
Then:
#x^3+4x-12 = (x-x_1)(x-x_2)(x-x_3)#