How do you factor the expression #8y²-28y-60#?

1 Answer
Jun 30, 2018

Answer:

#4(y-5)(3+2y)#

Explanation:

At first we Can factor #4(2y^2-7y-15)# since
#8=2*4#
#28=7*4#
and
#60=15*4#

so we get

#4(2y^2-7y-15)#
now we solve the equation

#2y^2-7y-15=0#
dividing by #2#
#y^2-7/2y-15/2=0#
by the quadratic formula we get

#y_(1,2)=7/4pmsqrt(49/16+120/16)#
#y_(1,2)=7/4pmsqrt(169/16)#
so we get

#y_(1,2)=7/4pm13/4#
this gives

#y_1=5#
#y_2=6/4=3/2#

so we get

#4(y-5)(2y+3)#