How do you factor # (x^2-1)^2-(x-1)^2#?
1 Answer
Aug 29, 2016
Explanation:
Note that
So we find:
#(x^2-1)^2-(x-1)^2#
#=(x-1)^2(x+1)^2-(x-1)^2#
#=(x-1)^2((x+1)^2-1)#
#=(x-1)^2(x^2+2x+color(red)(cancel(color(black)(1)))-color(red)(cancel(color(black)(1))))#
#=(x-1)^2x(x+2)#
graph{(x^2-1)^2-(x-1)^2 [-10, 10, -5.5, 4.5]}