How do you factor #x^2+16x+64#?

1 Answer
Feb 17, 2017

Answer:

#x^2+16x+64 = (x+8)^2# is a perfect square trinomial.

Explanation:

Given:

#x^2+16x+64#

Note that both #x^2# and #64=8^2# are both perfect squares, so we should check whether the middle term matches the middle term of #(x+8)^2#...

#(x+8)^2 = x^2+2(x)(8)+8^2 = x^2+16x+64#

So #x^2+16x+64 = (x+8)^2# is a perfect square trinomial.