How do you factor #(x-3)^2(2x+1)^3+(x-3)^3(2x+1)^2#?

1 Answer
Feb 7, 2017

Answer:

#(x-3)^2(2x+1)^3+(x-3)^3(2x+1)^2=(x-3)^2(2x+1)^2(3x-2)#

Explanation:

Both of the two expressions are divisible by #(x-3)^2(2x+1)^2#, so separate that out, then resolve the remaining terms:

#(x-3)^2(2x+1)^3+(x-3)^3(2x+1)^2#

#=(x-3)^2(2x+1)^2((2x+1)+(x-3))#

#=(x-3)^2(2x+1)^2(3x-2)#