How do you factor #x^3+x^2-125p^3-25p^2#?
1 Answer
Sep 23, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
The difference of cubes identity can be written:
#a^3-b^3 = (a-b)(a^2+ab+b^2)#
So we find:
#x^3+x^2-125p^3-25p^2 = (x^3-(5p)^3)+(x^2-(5p)^2)#
#color(white)(x^3+x^2-125p^3-25p^2) = (x-5p)(x^2+5px+25p^2)+(x-5p)(x+5p)#
#color(white)(x^3+x^2-125p^3-25p^2) = (x-5p)(x^2+5px+25p^2+x+5p)#
This has no simpler factors.