How do you factor #x^3 - x^2 - 2x + 2=0#?
2 Answers
Explanation:
Rewrite the equation
Explanation:
#"note that the coefficients "1-1-2+2=0#
#rArr(x-1)" is a factor"#
#"divide the polynomial by "(x-1)#
#color(red)(x^2)(x-1)cancel(color(magenta)(+x^2))cancel(-x^2)-2x+2#
#=color(red)(x^2)(x-1)color(red)(-2)(x-1)cancel(color(magenta)(-2))cancel(+2)#
#rArrx^3-x^2-2x+2=(x-1)(x^2-2)#
#x^2-2larrcolor(blue)"is a difference of squares"#
#•color(white)(x)a^2-b^2=(a-b)(a+b)#
#"with "a=x" and "b=sqrt2#
#rArrx^2-2=(x-sqrt2)(x+sqrt2)#
#rArrx^3-x^2-2x+2=0#
#rArr(x-1)(x-sqrt2)(x+sqrt2)=0#
#rArrx=1" or "x=+-sqrt2#