How do you factor #x^(4n) - y^(4n)#?
1 Answer
May 12, 2016
Explanation:
Note that both
#x^(4n)=(x^(2n))^2# #y^(4n)=(y^(2n))^2#
With this knowledge, we will factor this expression as a difference of squares:
#color(red)a^2-color(blue)b^2=(color(red)a+color(blue)b)(color(red)a-color(blue)b)#
Thus, we see that
#x^(4n)-y^(4n)#
#=(color(red)(x^(2n)))^2-(color(blue)(y^(2n)))^2#
#=(color(red)(x^(2n))+color(blue)(y^(2n)))(color(red)(x^(2n))-color(blue)(y^(2n)))#
Notice that we can factor
#x^(4n)-y^(4n)=(x^(2n)+y^(2n))(x^(2n)-y^(2n))#
#=(x^(2n)+y^(2n))((x^n)^2-(y^n)^2)#
#=(x^(2n)+y^(2n))(x^n+y^n)(x^n-y^n)#