How do you factor #y^4+8y^3+12#?
1 Answer
If the question is correct as stands then the answer is complicated, but here's a sketch of how you can do it...
Explanation:
Let
Then:
#y^4+8y^3+12 = (y+2)^4-24(y+2)^2+64(y+2)-36#
#color(white)(y^4+8y^3+12) = t^4-24t^2+64t-36#
#color(white)(y^4+8y^3+12) = (t^2-at+b)(t^2+at+c)#
#color(white)(y^4+8y^3+12) = t^4+(b+c-a^2)t^2+a(b-c)t+bc#
Equating coefficients:
#{ (b+c = a^2-24), (b-c = 64/a), (bc=-36) :}#
Hence:
#a^4-48a^2+576 = (a^2-24)^2 = (b+c)^2 = (b-c)^2+4bc = 4096/a^2-144#
Hence:
#0 = (a^2)^3-48(a^2)^2+720(a^2)-4096#
#color(white)(0) = (a^2-16)^3-48(a^2-16)-768#
Using Cardano's method, let
Then:
#u^3+v^3+3(uv-16)(u+v)-768 = 0#
Add the constraint
#(u^3)^2-768(u^3)+4096 = 0#
Using the quadratic formula:
#u^3 = (768+-sqrt(768^2-4(1)(4096)))/2#
#color(white)(u^3) = 384+-64sqrt(35)#
#color(white)(u^3) = 4^3(6+-sqrt(35))#
Hence:
#a^2 = 16+4root(3)(6+sqrt(35))+4root(3)(6-sqrt(35))#
We can use the positive square root:
#a = 2sqrt(4+root(3)(6+sqrt(35))+root(3)(6-sqrt(35)))#
Then:
#b = 1/2(a^2-24+64/a)#
#c = 1/2(a^2-24-64/a)#
Leaving us with two quadratics to solve:
#t^2-at+b = 0#
#t^2+at+c = 0#
yielding
Then the zeros of our original quartic are given by:
#y_n = t_n-2#
Hence we find a factorisation:
#y^4+8y^3+12 = (y-y_1)(y-y_2)(y-y_3)(y-y_4)#
where